Part Number Hot Search : 
TA480XXF NLAS3899 2SC4809G A180C EPA120E C1963P HFP730 PSB8592
Product Description
Full Text Search
 

To Download M24512-RBN6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M24512
512 Kbit Serial IC Bus EEPROM
FEATURES SUMMARY


Two-Wire I2C Serial Interface Supports 400 kHz Protocol Supply Voltage Ranges: - 1.8V to 5.5V (M24512 - R) - 2.5V to 5.5V (M24512 - W) Write Control Input BYTE and PAGE WRITE (up to 128 Bytes) RANDOM and SEQUENTIAL READ Modes Self-Timed Programming Cycle Automatic Address Incrementing Enhanced ESD/Latch-Up Protection More than 100,000 Erase/Write Cycles More than 40-Year Data Retention
Figure 1. Packages
8 1
PDIP8 (BN)
Table 1. M24512 devices
Reference M24512 Part Number M24512 - W M24512 - R
8 1
SO8 (MW) 208 mil width
8 1
SO8 (MN) 150 mil width
TSSOP8 (DW)
February 2005
1/24
M24512
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. M24512 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Power On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. DIP, SO and TSSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 4. Maximum RP Value versus Bus Parasitic Capacitance (C) for an I2C Bus . . . . . . . . . . . . 5 Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4. Most Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 5. Least Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 6. Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 7. Write Mode Sequences with WC=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 8. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. Read Mode Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/24
M24512
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8. Operating Conditions (M24512 - W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9. Operating Conditions (M24512 - R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 10. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 10.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 11. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 12. DC Characteristics (M24512 - W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 13. DC Characteristics(1) (M24512 - R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 14. AC Characteristics (M24512 - W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 15. AC Characteristics(1) (M24512 - R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 11.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12.PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 18 Table 16. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 18 Figure 13.SO8W - 8 lead Plastic Small Outline, 208 mils body width, Package Outline . . . . . . . . 19 Table 17. SO8W - 8 lead Plastic Small Outline, 208 mils body width, Package Mechanical Data . 19 Figure 14.SO8N - 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . . . . . . 20 Table 18. SO8N - 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . 20 Figure 15.TSSOP8 - 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 21 Table 19. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 21 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 20. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 21. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3/24
M24512
SUMMARY DESCRIPTION
These I C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 64K x 8 bits. Figure 2. Logic Diagram
2
VCC
3 E0-E2 SCL WC M24512 SDA
VSS
AI02275
Table 2. Signal Names
E0, E1, E2 SDA SCL WC VCC VSS Chip Enable Serial Data Serial Clock Write Control Supply Voltage Ground
ter. The Start condition is followed by a Device Select Code and Read/Write bit (RW) (as described in Table 3.), terminated by an acknowledge bit. When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read. Power On Reset In order to prevent data corruption and inadvertent Write operations during Power-up, a Power On Reset (POR) circuit is included. At Power-up, the device will not respond to any command until VCC has reached the Power On Reset threshold voltage (this threshold is lower than the VCC min operating voltage defined in Tables 8 and 9). In the same way, as soon as VCC drops from the normal operating voltage, below the Power On Reset threshold voltage, the device stops to respond to any command. Prior to selecting and issuing commands to the memory, a valid and stable VCC voltage must be applied. This voltage must remain stable and valid until the end of the transmission of the command and, for a Write instruction, until the completion of the internal write cycle (tW). Figure 3. DIP, SO and TSSOP Connections
M24512 E0 E1 E2 VSS 1 2 3 4 8 7 6 5
AI04035B
I2C uses a two-wire serial interface, comprising a bi-directional data line and a clock line. The devices carry a built-in 4-bit Device Type Identifier code (1010) in accordance with the I2C bus definition. The device behaves as a slave in the I2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus mas-
VCC WC SCL SDA
Note: See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1.
4/24
M24512
SIGNAL DESCRIPTION
Serial Clock (SCL). This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor must be connected from Serial Clock (SCL) to VCC. (Figure 4. indicates how the value of the pull-up resistor can be calculated). In most applications, though, this method of synchronization is not employed, and so the pull-up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output. Serial Data (SDA). This bi-directional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR'ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Serial Data (SDA) to VCC. (Figure 4. indicates how the value of the pull-up resistor can be calculated). Chip Enable (E0, E1, E2). These input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7bit Device Select Code. These inputs must be tied to VCC or VSS, to establish the Device Select Code. When not connected (left floating), these inputs are read as Low (0,0,0). Write Control (WC). This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write operations are disabled to the entire memory array when Write Control (WC) is driven High. When unconnected, the signal is internally read as VIL, and Write operations are allowed. When Write Control (WC) is driven High, Device Select and Address bytes are acknowledged, Data bytes are not acknowledged.
Figure 4. Maximum RP Value versus Bus Parasitic Capacitance (C) for an I2C Bus
VCC 20 Maximum RP value (k) 16 RP 12 8 4 0 10 100 C (pF)
AI01665b
RP
SDA MASTER fc = 100kHz fc = 400kHz SCL C
C 1000
5/24
M24512
Figure 5. I2C Bus Protocol
SCL
SDA SDA Input SDA Change
START Condition
STOP Condition
SCL
1
2
3
7
8
9
SDA
MSB
ACK
START Condition
SCL
1
2
3
7
8
9
SDA
MSB
ACK
STOP Condition
AI00792B
Table 3. Device Select Code
Device Type Identifier1 b7 Device Select Code 1 b6 0 b5 1 b4 0 Chip Enable Address2 b3 E2 b2 E1 b1 E0 RW b0 RW
Note: 1. The most significant bit, b7, is sent first. 2. E0, E1 and E2 are compared against the respective external pins on the memory device.
Table 4. Most Significant Byte
b15 b14 b13 b12 b11 b10 b9 b8
Table 5. Least Significant Byte
b7 b6 b5 b4 b3 b2 b1 b0
6/24
M24512
DEVICE OPERATION
The device supports the I2C protocol. This is summarized in Figure 5.. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The M24512 device is always a slave in all communication. Start Condition Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the High state. A Start condition must precede any data transfer command. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition, and will not respond unless one is given. Stop Condition Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven High. A Stop condition terminates communication between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Stand-by mode. A Stop condition at the end of a Write command triggers the internal Write cycle. Acknowledge Bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) Low to acknowledge the receipt of the eight data bits. Data Input During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driven Low. Memory Addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the Device Select Code, shown in Table 3. (on Serial Data (SDA), most significant bit first). The Device Select Code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable "Address" (E2, E1, E0). To address the memory array, the 4bit Device Type Identifier is 1010b. Up to eight memory devices can be connected on a single I2C bus. Each one is given a unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the Device Select Code is received, the device only responds if the Chip Enable Address is the same as the value on the Chip Enable (E0, E1, E2) inputs. The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations. If a match occurs on the Device Select code, the corresponding device gives an acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match the Device Select code, it deselects itself from the bus, and goes into Standby mode.
Table 6. Operating Modes
Mode Current Address Read Random Address Read 1 Sequential Read Byte Write Page Write
Note: 1. X = VIH or VIL.
RW bit 1 0
WC 1 X X
Bytes 1 1
Initial Sequence START, Device Select, RW = 1 START, Device Select, RW = 0, Address reSTART, Device Select, RW = 1
X X VIL VIL 1 1 128
1 0 0
Similar to Current or Random Address Read START, Device Select, RW = 0 START, Device Select, RW = 0
7/24
M24512
Figure 6. Write Mode Sequences with WC=1 (data write inhibited)
WC ACK BYTE WRITE DEV SEL ACK ACK NO ACK DATA IN
BYTE ADDR R/W
BYTE ADDR
START
WC ACK PAGE WRITE DEV SEL ACK ACK NO ACK DATA IN 1 DATA IN 2
BYTE ADDR R/W
BYTE ADDR
WC (cont'd) NO ACK PAGE WRITE (cont'd) NO ACK
START
DATA IN N
STOP
STOP
AI01120C
Write Operations Following a Start condition the bus master sends a Device Select Code with the Read/Write bit (RW) reset to 0. The device acknowledges this, as shown in Figure 7., and waits for two address bytes. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. Writing to the memory may be inhibited if Write Control (WC) is driven High. Any Write instruction with Write Control (WC) driven High (during a period of time from the Start condition until the end of the two address bytes) will not modify the memory contents, and the accompanying data bytes are not acknowledged, as shown in Figure 6.. Each data byte in the memory has a 16-bit (two byte wide) address. The Most Significant Byte (Table 4.) is sent first, followed by the Least Significant Byte (Table 5.). Bits b15 to b0 form the address of the byte in memory.
When the bus master generates a Stop condition immediately after the Ack bit (in the "10th bit" time slot), either at the end of a Byte Write or a Page Write, the internal Write cycle is triggered. A Stop condition at any other time slot does not trigger the internal Write cycle. After the Stop condition, the delay tW, and the successful completion of a Write operation, the device's internal address counter is incremented automatically, to point to the next byte address after the last one that was modified. During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does not respond to any requests. Byte Write After the Device Select code and the address bytes, the bus master sends one data byte. If the addressed location is Write-protected, by Write Control (WC) being driven High, the device replies with NoAck, and the location is not modified. If, instead, the addressed location is not Write-protect-
8/24
M24512
ed, the device replies with Ack. The bus master terminates the transfer by generating a Stop condition, as shown in Figure 7. Page Write The Page Write mode allows up to 128 bytes to be written in a single Write cycle, provided that they are all located in the same 'row' in the memory: that is, the most significant memory address bits (b15-b7) are the same. If more bytes are sent than will fit up to the end of the row, a condition known as `roll-over' occurs. This should be avoided, as data starts to become overwritten in an implementation dependent way. The bus master sends from 1 to 128 bytes of data, each of which is acknowledged by the device if Write Control (WC) is Low. If Write Control (WC) is High, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck. After each byte is transferred, the internal byte address counter (the 7 least significant address bits only) is incremented. The transfer is terminated by the bus master generating a Stop condition.
Figure 7. Write Mode Sequences with WC=0 (data write enabled)
WC ACK BYTE WRITE DEV SEL ACK ACK DATA IN ACK
BYTE ADDR R/W
BYTE ADDR
WC ACK PAGE WRITE DEV SEL ACK ACK DATA IN 1 ACK DATA IN 2
START
BYTE ADDR R/W
BYTE ADDR
WC (cont'd)
START
ACK PAGE WRITE (cont'd) DATA IN N
ACK
STOP
STOP
AI01106C
9/24
M24512
Figure 8. Write Cycle Polling Flowchart using ACK
WRITE Cycle in Progress
START Condition DEVICE SELECT with RW = 0
NO First byte of instruction with RW = 0 already decoded by the device
ACK Returned YES
NO
Next Operation is Addressing the Memory
YES
ReSTART
Send Address and Receive ACK
STOP
NO
START Condition
YES
DATA for the WRITE Operation
DEVICE SELECT with RW = 1
Continue the WRITE Operation
Continue the Random READ Operation
AI01847C
Minimizing System Delays by Polling On ACK During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum Write time (tw) is shown in Table 14., but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 8., is:
- -
-
Initial condition: a Write cycle is in progress. Step 1: the bus master issues a Start condition followed by a Device Select Code (the first byte of the new instruction). Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and the bus master goes back to Step 1. If the device has terminated the internal Write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1).
10/24
M24512
Figure 9. Read Mode Sequences
ACK CURRENT ADDRESS READ START DEV SEL R/W NO ACK DATA OUT STOP ACK
ACK RANDOM ADDRESS READ START DEV SEL * R/W
ACK DEV SEL * START
ACK
NO ACK DATA OUT STOP ACK
BYTE ADDR
BYTE ADDR
R/W
ACK SEQUENTIAL CURRENT READ START DEV SEL R/W
ACK
ACK
NO ACK
DATA OUT 1
DATA OUT N STOP
ACK SEQUENTIAL RANDOM READ START DEV SEL *
ACK
ACK DEV SEL * START
ACK
BYTE ADDR R/W
BYTE ADDR
DATA OUT 1 R/W
ACK
NO ACK
DATA OUT N STOP
AI01105C
Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 4th bytes) must be identical.
Read Operations Read operations are performed independently of the state of the Write Control (WC) signal. After the successful completion of a Read operation, the device's internal address counter is incremented by one, to point to the next byte address. Random Address Read A dummy Write is first performed to load the address into this address counter (as shown in Figure 9.) but without sending a Stop condition. Then, the bus master sends another Start condition, and repeats the Device Select Code, with the Read/ Write bit (RW) set to 1. The device acknowledges
this, and outputs the contents of the addressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a Stop condition. Current Address Read For the Current Address Read operation, following a Start condition, the bus master only sends a Device Select Code with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condition, as shown in Figure 9., without acknowledging the byte.
11/24
M24512
Sequential Read This operation can be used after a Current Address Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 9. The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter `rolls-over', and the device continues to output data from memory address 00h. Acknowledge in Read Mode For all Read commands, the device waits, after each byte read, for an acknowledgment during the 9th bit time. If the bus master does not drive Serial Data (SDA) Low during this time, the device terminates the data transfer and switches to its Standby mode.
INITIAL DELIVERY STATE
The device is delivered with all bits in the memory array set to 1 (each byte contains FFh).
12/24
M24512
MAXIMUM RATING
Stressing the device outside the ratings listed in Table 7. may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of Table 7. Absolute Maximum Ratings
Symbol TA TSTG TLEAD VIO VCC VESD Parameter Ambient Operating Temperature Storage Temperature Lead Temperature during Soldering Input or Output range Supply Voltage Electrostatic Discharge Voltage (Human Body model) 2 Min. -40 -65 Max. 125 150 Unit C C C V V V
this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
See note (1) -0.50 -0.50 -4000
ECOPACK(R)
6.5 6.5 4000
Note: 1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)
7191395 specification, and
13/24
M24512
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the MeasureTable 8. Operating Conditions (M24512 - W)
Symbol VCC TA Supply Voltage Ambient Operating Temperature Parameter Min. 2.5 -40 Max. 5.5 85 Unit V C
ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 9. Operating Conditions (M24512 - R)
Symbol VCC TA Supply Voltage Ambient Operating Temperature Parameter Min. 1.8 -40 Max. 5.5 85 Unit V C
Table 10. AC Measurement Conditions
Symbol CL Load Capacitance Input Rise and Fall Times Input Levels Input and Output Timing Reference Levels Parameter Min. 100 50 0.2VCC to 0.8VCC 0.3VCC to 0.7VCC Max. Unit pF ns V V
Figure 10. AC Measurement I/O Waveform
Input Levels 0.8VCC
Input and Output Timing Reference Levels 0.7VCC 0.3VCC
AI00825B
0.2VCC
14/24
M24512
Table 11. Input Parameters
Symbol CIN CIN ZL(3) ZH(3) tNS Parameter(1,2) Input Capacitance (SDA) Input Capacitance (other pins) Input Impedance (E2, E1, E0, WC) Input Impedance (E2, E1, E0, WC) Pulse width ignored (Input Filter on SCL and SDA) VIN < 0.3VCC VIN > 0.7VCC Single glitch 30 500 100 Test Condition Min. Max. 8 6 Unit pF pF k k ns
Note: 1. TA = 25 C, f = 400 kHz 2. Sampled only, not 100% tested. 3. E2,E1,E0: Input impedance when the memory is selected (after a Start condition).
Table 12. DC Characteristics (M24512 - W)
Symbol ILI ILO ICC Parameter Input Leakage Current (SCL, SDA, E0, E1, E2) Output Leakage Current Supply Current VCC = 5.5V, fc=400kHz (rise/fall time < 30ns) Stand-by Supply Current Input Low Voltage (SCL, SDA, WC) Input High Voltage (SCL, SDA, WC) Output Low Voltage IOL = 2.1 mA, VCC = 2.5 V VIN = VSS or VCC , VCC = 2.5 V VIN = VSS or VCC , VCC = 5.5 V -0.45 0.7VCC 2 2 5 0.3VCC VCC+1 0.4 mA A A V V V Test Condition VIN = VSS or VCC device in Standby mode(1) VOUT = VSS or VCC, SDA in Hi-Z VCC = 2.5V, fc=400kHz (rise/fall time < 30ns) Min. Max. 2 2 1 Unit A A mA
ICC1
VIL VIH VOL
Note: 1. When the device is selected (after a START condition), the Ei inputs have a different input impedance, as defined in Table 11.
Table 13. DC Characteristics(1) (M24512 - R)
Symbol ILI ILO ICC ICC1 VIL VIH VOL Parameter Input Leakage Current (SCL, SDA, E2, E1, E0) Output Leakage Current Supply Current Standby Supply Current Input Low Voltage Input High Voltage Output Low Voltage IOL = 0.7 mA, VCC = 1.8 V Test Condition VIN = VSS or VCC device in Stand-by mode VOUT = VSS or VCC, SDA in Hi-Z VCC =1.8V, fc = 400kHz (rise/fall time < 30ns) VIN = VSS or VCC , VCC = 1.8 V -0.45 0.7VCC Min. Max. 2 2 1 2 0.3 VCC VCC+1 0.2 Unit A A mA A V V V
Note: 1. The information contained in Table 13. is related to the new M24512 (process letter "A") and is subject to change without previous notice.
15/24
M24512
Table 14. AC Characteristics (M24512 - W)
Symbol fC tCHCL tCLCH tCH1CH2 tCL1CL2 tDH1DH2 tDL1DL2
(2) (2)
Alt. fSCL tHIGH tLOW tR tF tR tF tSU:DAT tHD:DAT tDH tAA tSU:STA tHD:STA tSU:STO tBUF tWR Clock Frequency
Parameter
Min.
Max. 400
Unit kHz ns ns
Clock Pulse Width High Clock Pulse Width Low Clock Rise Time Clock Fall Time SDA Rise Time SDA Fall Time Data In Set Up Time Data In Hold Time Data Out Hold Time Clock Low to Next Data Valid (Access Time) Start Condition Set Up Time Start Condition Hold Time Stop Condition Set Up Time Time between Stop Condition and Next Start Condition Write Time
600 1300 300 300 20 20 100 0 200 200 600 600 600 1300 5 or 10(4) 900 300 300
ns ns ns ns ns ns ns ns ns ns ns ns ms
tDXCX tCLDX tCLQX tCLQV (3) tCHDX (1) tDLCL tCHDH tDHDL tW
Note: 1. 2. 3. 4.
For a reSTART condition, or following a Write cycle. Sampled only, not 100% tested. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. For M24512 devices whose package marking shows the process letter "A" tW(max) = 5ms whereas for M24512 devices whose package marking shows the process letter "V" tW(max) = 10ms
Table 15. AC Characteristics(1) (M24512 - R)
Symbol fC tCHCL tCLCH tDL1DL2
(3)
Alt. fSCL tHIGH tLOW tF tSU:DAT tHD:DAT tDH tAA tSU:STA tHD:STA tSU:STO tBUF tWR Clock Frequency
Parameter
Min.
Max. 400
Unit kHz ns ns
Clock Pulse Width High Clock Pulse Width Low SDA Fall Time Data In Set Up Time Data In Hold Time Data Out Hold Time Clock Low to Next Data Valid (Access Time) Start Condition Set Up Time Start Condition Hold Time Stop Condition Set Up Time Time between Stop Condition and Next Start Condition Write Time
600 1300 20 100 0 200 200 600 600 600 1300 10 900 300
ns ns ns ns ns ns ns ns ns ms
tDXCX tCLDX tCLQX tCLQV tCHDX
(4) (2)
tDLCL tCHDH tDHDL tW
Note: 1. The information contained in Table 15. is related to the new M24512 (process letter "A") and is subject to change without previous notice. 2. For a reSTART condition, or following a Write cycle. 3. Sampled only, not 100% tested. 4. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
16/24
M24512
Figure 11. AC Waveforms
tCHCL
tCLCH
SCL tDLCL SDA In tCHDX START Condition SDA Input tCLDX SDA tDXCX Change tCHDH tDHDL START STOP Condition Condition
SCL
SDA In tCHDH STOP Condition tW Write Cycle tCHDX START Condition
SCL tCLQV SDA Out Data Valid tCLQX
AI00795C
17/24
M24512
PACKAGE MECHANICAL
Figure 12. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Outline
b2 A2 A1 b e A L
E
c eA eB
D
8
E1
1 PDIP-B
Note: Drawing is not to scale.
Table 16. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b b2 c D E E1 e eA eB L 3.30 2.92 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 0.38 2.92 0.36 1.14 0.20 9.02 7.62 6.10 - - 4.95 0.56 1.78 0.36 10.16 8.26 7.11 - - 10.92 3.81 0.130 0.115 0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300 Min Max 5.33 0.015 0.115 0.014 0.045 0.008 0.355 0.300 0.240 - - 0.195 0.022 0.070 0.014 0.400 0.325 0.280 - - 0.430 0.150 Typ Min Max 0.210 inches
18/24
M24512
Figure 13. SO8W - 8 lead Plastic Small Outline, 208 mils body width, Package Outline
A2 B e D
A C CP
N
E
1
H A1 L
SO-b
Note: Drawing is not to scale.
Table 17. SO8W - 8 lead Plastic Small Outline, 208 mils body width, Package Mechanical Data
millimeters Symbol Typ A A1 A2 B C D E e H L N CP 1.27 0.20 0.35 - 5.15 5.20 - 7.70 0.50 0 8 0.10 0.10 Min Max 2.03 0.25 1.78 0.45 - 5.35 5.40 - 8.10 0.80 10 0.050 0.008 0.014 - 0.203 0.205 - 0.303 0.020 0 8 0.004 0.004 Typ Min Max 0.080 0.010 0.070 0.018 - 0.211 0.213 - 0.319 0.031 10 inches
19/24
M24512
Figure 14. SO8N - 8 lead Plastic Small Outline, 150 mils body width, Package Outline
h x 45 A2 B e D A C ddd
8
E
1
H A1 L
SO-A
Note: Drawing is not to scale.
Table 18. SO8N - 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data
millimeters Symbol Typ A A1 A2 B C D ddd E e H h L N 1.27 3.80 - 5.80 0.25 0.40 0 8 Min 1.35 0.10 1.10 0.33 0.19 4.80 Max 1.75 0.25 1.65 0.51 0.25 5.00 0.10 4.00 - 6.20 0.50 0.90 8 0.050 0.150 - 0.228 0.010 0.016 0 8 Typ Min 0.053 0.004 0.043 0.013 0.007 0.189 Max 0.069 0.010 0.065 0.020 0.010 0.197 0.004 0.157 - 0.244 0.020 0.035 8 inches
20/24
M24512
Figure 15. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Outline
D
8
5
c
E1 E
1
4
A1 A CP b e A2
L L1
TSSOP8AM
Note: Drawing is not to scale.
Table 19. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b c CP D e E E1 L L1 N 3.000 0.650 6.400 4.400 0.600 1.000 0 8 8 2.900 - 6.200 4.300 0.450 1.000 0.050 0.800 0.190 0.090 Min Max 1.200 0.150 1.050 0.300 0.200 0.100 3.100 - 6.600 4.500 0.750 0.1181 0.0256 0.2520 0.1732 0.0236 0.0394 0 8 8 0.1142 - 0.2441 0.1693 0.0177 0.0394 0.0020 0.0315 0.0075 0.0035 Typ Min Max 0.0472 0.0059 0.0413 0.0118 0.0079 0.0039 0.1220 - 0.2598 0.1772 0.0295 inches
21/24
M24512
PART NUMBERING
Table 20. Ordering Information Scheme
Example: Device Type M24 = I2C serial access EEPROM Device Function 512 = 512 Kbit (64K x 8) Operating Voltage W = VCC = 2.5 to 5.5V R = VCC = 1.8 to 5.5V Package BN = PDIP8 MW = SO8 (208 mil width) MN = SO8 (150 mil body width) DW = TSSOP8 Device Grade 6 = Industrial temperature range, -40 to 85 C. Device tested with standard test flow Option blank = Standard Packing T = Tape and Reel Packing Plating Technology blank = Standard SnPb plating P or G = Lead-Free and RoHS compliant M24512 - W MW 6 T P
For a list of available options (speed, package, etc.) or for further information on any aspect of this
device, please contact your nearest ST Sales Office.
22/24
M24512
REVISION HISTORY
Table 21. Document Revision History
Date Revision Description of Revision Lead Soldering Temperature in the Absolute Maximum Ratings table amended Write Cycle Polling Flow Chart using ACK illustration updated LGA8 and SO8(wide) packages added References to PSDIP8 changed to PDIP8, and Package Mechanical data updated LGA8 Package Mechanical data and illustration updated SO16 package removed LGA8 Package given the designator "LA" LGA8 Package mechanical data updated Document becomes Preliminary Data Test conditions for ILI, ILO, ZL and ZH made more precise VIL and VIH values unified. tNS value changed Document promoted to Full Datasheet Table of contents, and Pb-free options added. Minor wording changes in Summary Description, Power-On Reset, Memory Addressing, Write Operations, Read Operations. VIL(min) improved to -0.45V. LGA8 package is Not for New Design. 5V and -S supply ranges, and Device Grade 5 removed. Absolute Maximum Ratings for VIO(min) and VCC(min) changed. Soldering temperature information clarified for RoHS compliant devices. Device grade information clarified. AEC-Q100-002 compliance. VIL specification unified for SDA, SCL and WC INITIAL DELIVERY STATE is FFh (not necessarily the same as Erased). LGA package removed, TSSOP8 and SO8N packages added (see PACKAGE MECHANICAL section and Table 20., Ordering Information Scheme). Voltage range R (1.8V to 5.5V) also offered. Minor wording changes. ZL Test Conditions modified in Table 11., Input Parameters and Note 3. added. ICC and ICC1 values for VCC = 5.5V added to Table 12., DC Characteristics (M24512 - W). Note added to Table 12., DC Characteristics (M24512 - W). Power On Reset paragraph specified. tW max value modified in Table 14., AC Characteristics (M24512 - W) and note 4 added. Plating technology changed in Table 20., Ordering Information Scheme. Resistance and capacitance renamed in Figure 4., Maximum RP Value versus Bus Parasitic Capacitance (C) for an I2C Bus.
29-Jan-2001
1.1
10-Apr-2001 16-Jul-2001 02-Oct-2001 13-Dec-2001 12-Jun-2001 22-Oct-2003
1.2 1.3 1.4 1.5 1.6 2.0
02-Sep-2004
3.0
22-Feb-2005
4.0
23/24
M24512
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
24/24
This datasheet has been downloaded from: www..com Datasheets for electronic components.


▲Up To Search▲   

 
Price & Availability of M24512-RBN6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X